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Dedicated to the memory of George R. Sell

Received: 6 November 2017 / Revised: 1 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
In this article, we consider a small rigid body moving in a viscous fluid filling the whole R2.
We assume that the diameter of the rigid body goes to 0, that the initial velocity has bounded
energy and that the density of the rigid body goes to infinity. We prove that the rigid body
has no influence on the limit equation by showing convergence of the solutions towards a
solution of the Navier–Stokes equations in the full plane R2.

Keywords Incompressible flow · Navier–Stokes equations · Fluid–structure interaction ·
Small obstacle · Singular limit

1 Introduction

In this paper, we consider a fluid-solid system consisting in a small smooth rigid body �ε of
size ε evolving in a viscous fluid filling the whole of R2. Our aim is to determine the limit of
this coupled system when the size of the rigid body ε goes to 0.

Let us describe now the fluid solid system of equations. To do that, we need to introduce
some notation. We denote by uε, respectively pε , the velocity, respectively the pressure, of
the fluid; they are defined onR2 \�ε, the exterior of the smooth rigid body�ε . The evolution
of the rigid body �ε(t) is described by hε, the position of its center of mass, and by θε , the
angle of rotation of the rigid body compared with the initial position. We have that

�ε(t) = hε(t) +
(
cos θε(t) − sin θε(t)
sin θε(t) cos θε(t)

)
(�ε(0) − hε(0)) .
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Thevelocity of thefluid verifies the incompressibleNavier–Stokes equations in the exterior
of the rigid body:

∂uε

∂t
+ uε · ∇uε − ν�uε + ∇ pε = 0, div uε = 0 for t > 0 and x ∈ R

2 \ �ε(t). (1)

On the boundary of the rigid body we assume no-slip boundary conditions:

uε(t, x) = h′
ε(t) + θ ′

ε(t)(x − hε(t))
⊥ for t > 0 and x ∈ ∂�ε(t). (2)

Moreover, the velocity is assumed to vanish at infinity:

lim|x |→∞ uε(t, x) = 0 for t ≥ 0. (3)

Now we write down the equations of motion of the solid body. Let us denote by mε the
mass of the solid and by Jε the momentum of inertia of the solid.We also denote by σ(uε, pε)

the stress tensor of the fluid:

σ(uε, pε) = 2νD(uε) − pε I2

where I2 is the identity matrix and D(uε) is the deformation tensor

D(uε) = 1

2

(
∂uε,i

∂x j
+ ∂uε, j

∂xi

)
i, j

.

Then the solid body �ε(t) evolves according to Newton’s balance law for linear and
angular momenta:

mεh′′
ε (t) = −

∫
∂�ε(t)

σ (uε, pε)nε for t > 0, (4)

and

Jεθ
′′
ε (t) = −

∫
∂�ε(t)

(σ (uε, pε)nε) · (x − hε)
⊥ for t > 0. (5)

Above nε denotes the unit normal to ∂�ε which points to the interior of the rigid body
�ε , the orthogonal x⊥ is defined by x⊥ = (−x2, x1) and σ(uε, pε)nε denotes the matrix
σ(uε, pε) applied to the vector nε.

One can obtain energy estimates for this system of equations. If we formally multiply the
equation of uε by uε, do some integrations by parts using also the equations of motion of the
rigid body, we get the following energy estimate:

‖uε(t)‖2L2(R2\�ε)
+ mε|h′

ε(t)|2 + Jε|θ ′
ε(t)|2 + 4ν

∫ t

0
‖D(uε)‖2L2(R2\�ε)

≤ ‖uε(0)‖2L2(R2\�ε)
+ mε|h′

ε(0)|2 + Jε|θ ′
ε(0)|2. (6)

To solve the system of equations (1)–(5), we need to impose the initial data. For the
fluid part of the system we need to impose the initial velocity uε(0, x). The two equations
describing the evolution of the rigid body are second-order in time, so we need to know
hε(0), h′

ε(0), θε(0) and θ ′
ε(0). The system of equations being translation invariant, we can

assume without loss of generality that the initial position of the center of mass of the rigid
body is in the origin: hε(0) = 0. Moreover, from the definition of the angle of rotation θε

we obviously have that θε(0) = 0. So we only need to impose uε(0, x), h′
ε(0) and θ ′

ε(0).
The initial velocity will be assumed to be square integrable only. As such, its trace on the
boundary is not well-defined. Only its normal trace is defined thanks to the divergence free
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condition. Therefore, we need to impose the following compatibility condition on the initial
velocity:

uε(0, x) · nε =
[
h′

ε(0) + θ ′
ε(0)

(
x − hε(0)

)⊥]
· nε on ∂�ε(0). (7)

In conclusion, to solve the system of equations (1)–(5), we need to impose that uε(0, x) ∈
L2(R2 \ �ε(0)), that div uε(0, x) = 0 in R

2 \ �ε(0) and the compatibility condition (7).
There is no condition required on h′

ε(0) and θ ′
ε(0) while hε(0) = 0 and θε(0) = 0.

To state the classical result of existence and uniqueness of solutions of (1)–(5), it is
practical to extend the velocity field uε inside the rigid body as follows:

ũε(t, x) =
{

uε(t, x) if x ∈ R
2 \ �ε(t)

h′
ε(t) + θ ′

ε(t)(x − hε(t))⊥ if x ∈ �ε(t).
(8)

The conditions imposed on the initial data ensure that ũε(0, x) belongs to L2(R2) and is
divergence free in R2.

Let us denote by ρε the density of the rigid body �ε . We extend ρε in the fluid region
R
2 \ �ε by giving it value 1:

ρ̃ε(t, x) =
{
1, x ∈ R

2 \ �ε(t)

ρε, x ∈ �ε(t).

Due to the energy estimates (6), global existence of finite energy solutions of (1)–(5)
have been proved in a variety of settings. The literature is vast, we give here just a few
references dealing with the dimension two: in [2,7,13] the authors consider the case of one
or several rigid bodies moving in a bounded domain filled with a viscous fluid while in [15]
the authors consider a single disk moving in a fluid filling the whole plane. The existence for
the problem we are considering here was not explicitly studied in these works (because we
do not assume the rigid body to be a disk), but more complicated cases have been considered
in the literature: the case of a 2D bounded domain where collisions with the boundary must
be taken into account (see [2,7,13]) and the case of R3 with a rigid body of arbitrary shape
(see for example [14,16]). From these results we can extract the following statement about
the existence and uniqueness of solutions of (1)–(5). We use the notation R+ = [0,∞) and
emphasize that the endpoint 0 belongs to R+. This is important when we write local spaces
in R+ like for instance L2

loc(R+) = { f ; f square integrable on any interval [0, t]}. We will
give a formulation of the PDE in terms of the extended velocity ũε.

Theorem 1 Let uε(0, x) ∈ L2(R2 \�ε(0)) be divergence free and verifying the compatibility
condition (7). We assume that hε(0) = 0 and θε(0) = 0 and we extend uε(0, x) to ũε(0, x)

as in (8). Then ũε(0, x) is divergence free and square integrable on R
2 and there exists a

unique global weak solution (uε, hε, θε) of (1)–(5) in the following sense:

• uε, hε, θε satisfy

uε ∈ L∞(R+; L2(R2 \ �ε)) ∩ L2
loc(R+; H1(R2 \ �ε)),

hε ∈ W 1,∞(R+;R2), θε ∈ W 1,∞(R+;R);
• if we define ũε as in (8) then ũε is divergence free with Dũε(t, x) = 0 in �ε(t) and the

equations of motion are verified in the sense of distributions under the following form

−
∫ ∞

0

∫
R2

ρ̃εũε · (
∂tϕε + (̃uε · ∇)ϕε

) + 2ν
∫ ∞

0

∫
R2

D(̃uε) : D(ϕε)
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=
∫
R2

ρ̃ε(0)̃uε(0) · ϕε(0).

for any divergence free test function ϕε ∈ H1(R+ × R
2) compactly supported in time

and such that Dϕε(t, x) = 0 in �ε(t);

Moreover, ũε satisfies the following energy inequality:∫
R2

ρ̃ε |̃uε|2 + 4ν
∫ t

0

∫
R2

|D(̃uε)|2 ≤
∫
R2

ρ̃ε(0)|̃uε(0)|2 ∀t > 0. (9)

As mentioned before, we are interested in describing the asymptotic behavior of this
fluid-solid system when the diameter of the rigid body�ε goes to 0. There are several papers
dealing with this issue when the rigid body does not move with the fluid. Iftimie, Lopes Filho
and Nussenzveig Lopes [9] have treated the asymptotic behavior of viscous incompressible
2D flow in the exterior of a small fixed rigid body as the size of the rigid body becomes
very small, see also [1] for the case of the periodic boundary conditions. Moreover, Lacave
[10] considered a two-dimensional viscous fluid in the exterior of a thin fixed rigid body
shrinking to a curve and proved convergence to a solution of the Navier–Stokes equations in
the exterior of a curve.

Although we are dealing here only with viscous fluids, let us mention that the case of
a perfect incompressible fluid governed by the Euler equations also makes sense and the
literature is richer. Let us mention a few results. Iftimie, Lopes Filho and Nussenzveig Lopes
[8] have studied the asymptotic behavior of incompressible, ideal two-dimensional flow in
the exterior of a small fixed rigid body when the size of the rigid body becomes very small.
Recently, Glass, Lacave and Sueur [4] have studied the case when the solid body shrinks to
a point with fixed mass and circulation and is moving with the fluid. The same three authors
also consider in [5] the case when the body shrinks to a massless pointwise particle with
fixed circulation. In that case, the fluid-solid system converges to the vortex-wave system. In
addition, Glass, Munnier and Sueur [6] considered the case of a bounded domain.

As far as we know, there is only one result dealing with the case of a small rigid body
moving in a viscous fluid in dimension two. More precisely, Lacave and Takahashi [11]
considered a small moving disk in a two-dimensional viscous incompressible fluid. They
used a fixed-point type argument based on previously known L p − Lq decay estimates of
the linear semigroup associated to the fluid-solid system (see [3]). They proved convergence
towards the solution of the Navier–Stokes equations inR2 under the assumption that the rigid
body is a disk of radius ε, that the density ρε is constant plus some smallness assumptions
on the initial data (including the smallness of the L2 norm of the initial fluid velocity). More
precisely, their result is the following.

Theorem 2 ([11]) There exists a constant λ0 > 0 such that if

• uε(0, x) ∈ L2(R2 \ �ε(0)) is divergence free and verifies the compatibility condition
(7);

• the rigid body is the disk �ε = D(hε, ε);
• the density ρε is assumed to be independent of ε;
• ũε(0, x) converges weakly in L2(R2) to some u0(x);
• we have the following smallness of the initial data

‖uε(0, x)‖L2(R2\�ε(0)) + ε|h′
ε(0)| + ε2|θ ′

ε(0)| ≤ λ0 (10)

then the global solution ũε given by Theorem 1 converges weak∗ in L∞(R+; L2(R2)) ∩
L2

loc(R+; H1(R2)) towards the weak solution of the Navier–Stokes equations in R
2 with

initial data u0.
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Although they state their result for constant density, presumably the proof can be adapted to
the case where ρε ≥ ρ0 for some ρ0 > 0 independent of ε. On the other hand, the hypothesis
that �ε is a disk seems to be essential in the result of [11]. Indeed, a key ingredient are the
estimates of [3] and the proof of that result relies heavily on the fact that �ε is a disk because
it uses explicit formulae valid only for the case of a disk. Moreover, it is also hard to see
how the smallness condition (10) could be removed in their argument. Indeed, they use a
fixed point argument and that requires smallness at some point. Let us observe that in [11]
the authors also obtain uniform bounds in ε for the velocity of the disk. Therefore, they can
prove that the center of mass of the disk converges to some trajectory. However, nothing can
be said about this limit trajectory.

Here, we improve the result of [11] in two respects. First, the rigid body does not need
to be a disk. It does not even need to be shrinking homothetically to a point like in [11]. We
only assume that the diameter of the rigid body goes to 0. Second, we require no smallness
assumption on the initial fluid velocity uε(0, x). On the other hand, we need to assume that
the density of the rigid body goes to infinity and we are not able to prove uniform bounds on
the motion of the rigid body as in [11]. More precisely, we will prove the following result.

Theorem 3 We assume the hypothesis of Theorem 1 and moreover

• �ε(0) ⊂ D(0, ε);
• the mass mε of the rigid body verifies that

mε

ε2
→ ∞ as ε → 0; (11)

• uε(0, x) is bounded independently of ε in L2(R2\�ε(0)) and
√

mεh′
ε(0) and

√
Jεθ

′
ε(0)

are bounded independently of ε;
• ũε(0, x) converges weakly in L2(R2) to some u0(x) where ũε(0, x) is constructed as

in (8).

Let (uε, hε, θε) be the global solution of the system (1)–(5) given by Theorem 1. Then ũε

converges weak∗ in L∞(R+; L2(R2)) ∩ L2
loc(R+; H1(R2)) as ε → 0 towards the solution

of the Navier–Stokes equations in R
2 with initial data u0.

It will be clear from the proof that the convergence of ũε is stronger than stated. For
instance, we shall prove that ũε converges strongly in L2

loc (see Sect. 4).
Let us remark that if the measure of �ε is of order ε2 (something which is true if the rigid

body shrinks homothetically to a point, i.e. if �ε(0) is ε times a fixed rigid body) then the
hypothesis (11) means that the density ρε of the rigid body goes to ∞ as ε → 0.

Observe next that the boundedness of uε(0, x) in L2(R2 \ �ε(0)) and the boundedness

of
√

mεh′
ε(0) and

√
Jεθ

′
ε(0) imply the boundedness of

√
ρ̃ε(0, x )̃uε(0, x) in L2(R2). Since

ρε → ∞ this implies that ũε(0, x) is bounded in L2(R2). Therefore, the weak convergence
of ũε(0, x) to u0(x) is not really a new hypothesis.

Moreover, the boundedness of
√

ρ̃ε(0, x )̃uε(0, x) in L2(R2) and the energy inequal-
ity (9) imply that

√
ρ̃ε ũε is bounded independently of ε in the space L∞(R+; L2(R2)) ∩

L2
loc(R+; H1(R2)). Using again that ρε → ∞ we deduce that ũε is also bounded indepen-

dently of ε in L∞(R+; L2(R2)) ∩ L2
loc(R+; H1(R2)). And this is all we need to prove the

convergence of ũε towards a solution of the Navier–Stokes equations in R2. Our proof does
not require that ũε verifies the boundary conditions on �ε , nor do we need that Dũε = 0
in �ε . We only need the above mentioned boundedness of ũε and the fact that it verifies
the Navier–Stokes equations (without any boundary condition) in the exterior of the disk
D(hε(t), ε). We state next a more general result.
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Theorem 4 Let vε be a time-dependent divergence free vector field defined on R+ × R
2

belonging to the space

L∞(R+; L2(R2)) ∩ L2
loc(R+; H1(R2)) ∩ C0

w(R+; L2
loc(R

2 \ D(hε(t), ε))) (12)

and let hε ∈ W 1,∞(R+;R2). Assume moreover that

• vε is bounded independently of ε in the above space;
• vε(0, x) converges weakly in L2 as ε → 0 to some v0(x);
• vε verifies the Navier–Stokes equations in the exterior of the disk D(hε(t), ε):

∂tvε − ν�vε + vε · ∇vε = −∇πε in the set {(t, x) ; t > 0 and |x − hε(t)| > ε} (13)

for some πε;
• the velocity of the center of the disk verifies that ε|h′

ε(t)| → 0 in L∞
loc(R+) when ε → 0.

Let v be the unique solution of the Navier–Stokes equations in R
2 with initial data v0. Then

vε converges to v as ε → 0 weak∗ in the space L∞(R+; L2(R2)) ∩ L2
loc(R+; H1(R2)).

Theorem 4 with vε = ũε implies Theorem 3. Indeed, we already observed above that ũε

has all the properties required from vε in Theorem 4. And the hypothesis made on the mass
of the rigid body, see relation (11), in Theorem 3 implies that ε|h′

ε(t)| → 0 in L∞
loc(R+)

when ε → 0. This can be easily seen from the energy estimate (6). Indeed, the hypothesis
of Theorem 3 implies that the right-hand side of (6) is bounded uniformly in ε so

√
mεh′

ε

is uniformly bounded in t and ε. The fact that mε

ε2
→ ∞ and the boundedness of

√
mεh′

ε

implies that εh′
ε → 0 as ε → 0 uniformly in time.

The idea of the proof of Theorem 4 is completely different from the proof given in [11].We
multiply (13) with a cut-off vanishing on the disk D(hε(t), ε) constructed in a very particular
manner. We then pass to the limit with classical compactness methods. The difficulty here
is that the cut-off function itself depends on the time, so time-derivative estimates of vε are
not so easy to obtain. Also, passing to the limit in the terms ∂tv and �v is not obvious: the
first is difficult because the time derivative is hard to control and the second one is difficult
because the cut-off introduces negative powers of ε in this term.

The plan of the paper is the following. In the following section we introduce some notation
and prove some preliminary results. In Sect. 3 we construct the special cut-off near the rigid
body. The required temporal estimates are proved in Sect. 4. Finally, we pass to the limit in
Sect. 5.

2 Notation and Preliminary Results

We use the classical notation Cm for functions with m continuous derivatives and Hm the
Sobolev space of functions with m square-integrable weak derivatives. The notation Cm

b
stands for functions in Cm with bounded derivatives up to order m. All function spaces and
norms are considered to be taken onR2 in the x variable unless otherwise specified.We define
C∞
0,σ to be the space of smooth, compactly supported and divergence free vector fields onR2.

The derivatives are always taken with respect to the variable x unless otherwise specified.
The double dot product of two matrices M = (mi j ) and N = (ni j ) denotes the quantity
M : N = ∑

i, j mi j ni j . We denote by C a generic universal constant whose value can change
from one line to another.
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Let ϕ ∈ C1
b(R+; C∞

0,σ ). We define the stream function ψ of ϕ by

ψ(x) =
∫
R2

(x − y)⊥

2π |x − y|2 · ϕ(y)dy.

It is well-known that ψ ∈ C1
b (R+; C∞) and ∇⊥ψ = ϕ. The stream function ψ given

above is characterized by two facts. One is that∇⊥ψ = ϕ and another one is that it vanishes at
infinity. But in our case, the vanishing at infinity is not important since we will use compactly
supported test functions. On the other hand, it is useful to have the stream function small in
the neighborhood of the rigid body. We define now a modified stream function, denoted by
ψε , which vanishes at the center of the disk D(hε(t), ε):

ψε(t, x) = ψ(t, x) − ψ(t, hε(t)). (14)

Observe that even if ϕ is constant in time, the modified stream function still depends on the
time through hε. We collect some properties of the modified stream function in the following
lemma.

Lemma 1 The modified stream function ψε has the following properties:

(i) We have that ψε ∈ W 1,∞(R+; C∞) and ∇⊥ψε = ϕ.
(ii) For all t, R ≥ 0 and x ∈ R

2 we have that

‖ψε(t, ·)‖L∞(D(hε(t),R)) ≤ R‖ϕ(t, ·)‖L∞ (15)

and

‖∂tψε(t, ·)‖L∞(D(hε(t),R)) ≤ R‖∂tϕ(t, ·)‖L∞ + |h′
ε(t)|‖ϕ(t, ·)‖L∞ (16)

with the remark that the last relation holds true only almost everywhere in time.

Proof Clearly ∇⊥ψε = ∇⊥ψ = ϕ. Since hε ∈ W 1,∞(R+) and ψ ∈ C1
b (R+; C∞) we

immediately see that ψε ∈ W 1,∞(R+; C∞) which proves (i).
By the mean value theorem

|ψε(t, x)| = |ψ(t, x) − ψ(t, hε(t))| ≤ |x − hε(t)|‖∇ψ(t, ·)‖L∞

= |x − hε(t)|‖ϕ(t, ·)‖L∞ . (17)

Relation (15) follows. To prove (16) we recall that hε is Lipschitz in time so it is almost
everywhere differentiable in time. Let t be a time where hε is differentiable. We write

∂tψε(t, x) = ∂t (ψ(t, x) − ψ(t, hε(t)))

= ∂tψ(t, x) − ∂tψ(t, hε(t)) − h′
ε(t) · ∇ψ(t, hε(t))

so

‖∂tψε(t, ·)‖L∞(D(hε(t),R)) ≤ ‖∂tψ(t, x) − ∂tψ(t, hε(t))‖L∞(D(hε(t),R))

+ |h′
ε(t)|‖∇ψ(t, ·)‖L∞

≤ R‖∂t∇ψ(t, ·)‖L∞ + |h′
ε(t)|‖ϕ(t, ·)‖L∞

= R‖∂tϕ(t, ·)‖L∞ + |h′
ε(t)|‖ϕ(t, ·)‖L∞ .

This completes the proof of the lemma. ��
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We will need to define a cut-off function near the rigid body with L2 norm of the gradient
as small as possible. This will be done in the next section. For the moment, let us recall that
the function that minimizes the L2 norm of the gradient, that vanishes for |x | = A and is
equal to 1 for |x | = B is harmonic. So it is given by the explicit formula

f A,B : R2 → [0, 1], f A,B(x) =

⎧⎪⎨
⎪⎩
0 if |x | < A
ln |x |−ln A
ln B−ln A if A < |x | < B

1 if |x | > B.

This special cut-off has the following properties.

Lemma 2 We have that f A,B ∈ W 1,∞. Moreover,

‖ f A,B(x) − 1‖2L2 = π A2
(

α2

2 ln2 α
− 1

2 ln2 α
− 1

ln α

)
,

‖∇ f A,B‖2L2 = 2π

ln α

and

∥∥|x |∇2 f A,B
∥∥2

L2(A<|x |<B)
= 4π

ln α

where α = B
A .

Proof The Lipschitz character of f A,B is obvious once we remark that f A,B is smooth for
|x | �= A and |x | �= B and continuous across |x | = A and |x | = B.

Next, we have that

‖ f A,B(x) − 1‖2L2 =
∫

|x |<A
1 dx +

∫
A<|x |<B

∣∣∣∣ ln |x | − ln B

ln B − ln A

∣∣∣∣
2

dx

= π A2 + B2

(ln B − ln A)2

∫
A/B<|y|<1

ln2 |y| dy

= π A2
(
1 + α2

ln2 α

∫ 1

1/α
ln2 r 2r dr

)

= π A2
(

α2

2 ln2 α
− 1

2 ln2 α
− 1

ln α

)
.

From the definition of f A,B , we compute for A < |x | < B

∇ f A,B = x

|x |2 ln α
and |∇2 f A,B | =

√
2

|x |2 ln α
·

So

‖∇ f A,B‖2L2 = 1

ln2 α

∫
A<|x |<B

1

|x |2 dx = 2π

ln α

and ∥∥|x |∇2 f A,B
∥∥2

L2(A<|x |<B)
= 2

ln2 α

∫
A<|x |<B

1

|x |2 dx = 4π

ln α
.

This completes the proof of the lemma. ��
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3 Cut-off Near the Rigid Body

We begin now the proof of Theorem 4. It suffices to prove the following statement.

Proposition 1 For all finite times T > 0 there exists a subsequence vεk which converges
weak∗ in L∞(0, T ; L2)∩L2(0, T ; H1) towards a solution v ∈ L∞(0, T ; L2)∩L2(0, T ; H1)

of the Navier–Stokes equations on [0, T ) × R
2 with initial data v0.

Indeed, let us assume that Proposition 1 is proved. We know that the Navier–Stokes
equations in dimension two have a unique global solution v in the space L∞(R+; L2) ∩
L2(R+; H1), see for example [12]. The solution v from Proposition 1 is necessarily the
restriction to [0, T ] of this unique global solution. Since we have uniqueness of the limit,
we deduce that the whole sequence vε converges weak∗ in L∞(0, T ; L2) ∩ L2(0, T ; H1)

towards v. Since T is arbitrary, Theorem 4 follows.
The rest of this paper is devoted to the proof of Proposition 1. Let T > 0 be fixed. From

now on the time t is assumed to belong to the interval [0, T ]. The constant K will denote a
constant which depends only on ν and

sup
0<ε≤1

‖vε‖L∞(0,T ;L2)∩L2(0,T ;H1)

and whose value may change from one line to another. In particular, the constant K does not
depend on ε.

By hypothesis we know that

lim
ε→0

sup
[0,T ]

ε|h′
ε(t)| = 0. (18)

We assume that ε ≤ 1/100 and we choose αε such that

100 ≤ αε ≤ 1

ε
, lim

ε→0
αε = ∞ and lim

ε→0
εαε(1 + |h′

ε(t)|) = 0 (19)

uniformly in t ∈ [0, T ]. The existence of such an αε follows from (18). Indeed, we could
choose for instance

αε = max

⎛
⎜⎝100,

1

sup
[0,T ]

√
ε + ε|h′

ε(t)|

⎞
⎟⎠ .

Weconstruct in the following lemma a special cut-off function fε near the disk D(hε(t), ε)
such that fε(x) = 0 for all |x | ≤ ε and fε(x) = 1 for all |x | ≥ εαε .

Lemma 3 There exists a smooth cut-off function fε ∈ C∞(R2; [0, 1]) such that

(i) fε vanishes in the neighborhood of the disk D(0, ε) and fε = 1 for |x | ≥ εαε;
(ii) there exists a universal constant C such that

‖ fε‖L∞ = 1, ‖∇ fε‖L2 ≤ C√
ln αε

,
∥∥|x |∇2 fε

∥∥
L2 ≤ C√

ln αε

, ‖ fε − 1‖L2 ≤ C
εαε

ln αε

·

Proof From Lemma 2 we observe that the function

f̃ε = fε,εαε =

⎧⎪⎨
⎪⎩
0 if |x | < ε
ln(|x |/ε)
ln αε

if ε < |x | < εαε

1 if |x | > εαε
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satisfies

‖ f̃ε‖L∞ = 1, ‖∇ f̃ε‖L2 ≤ C√
ln αε

,
∥∥|x |∇2 f̃ε

∥∥
L2(ε<|x |<εαε)

≤ C√
ln αε

and

‖ f̃ε − 1‖L2 ≤ C
εαε

ln αε

so it has all the required properties except smoothness. More precisely, f̃ε is not smooth
across |x | = ε and |x | = εαε . To obtain a smooth function fε from f̃ε we need to cut-off in
the neighborhood of these two circles.

Let g ∈ C∞
0 (R2; [0, 1]) be such that g(x) = 0 for |x | < 2 and g(x) = 1 for |x | > 4. We

define

g1
ε (x) = g

( x

ε

)
=

{
0, |x | < 2ε

1, |x | > 4ε

and

g2
ε (x) = 1 − g

(
8x

εαε

)
=

{
1, |x | < εαε

4

0, |x | > εαε

2 .

With the help of all the auxiliary functions above, we define a new function

fε = 1 + g2
ε

(
g1
ε f̃ε − 1

) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, |x | > εαε

2

1 + g2
ε

(
f̃ε − 1

)
, εαε

4 < |x | < εαε

2

f̃ε, 4ε < |x | < εαε

4

g1
ε f̃ε, 2ε < |x | < 4ε

0, |x | < 2ε.

Clearly fε satisfies (i) and is smooth across |x | = ε and |x | = εαε , so it remains to prove (ii).
From the definition of fε, we immediately see that ‖ fε‖L∞ = 1. To simplify the write-up,
we use the notation L p(a, b) = L p(a < |x | < b). Clearly g1

ε and g2
ε are uniformly bounded

in L∞ and∇g1
ε and∇g2

ε are uniformly bounded in L2. Using these observations we estimate

‖∇ fε‖L2 ≤ ‖∇ (
g1
ε f̃ε

)‖L2(2ε,4ε) + ‖∇ f̃ε‖L2(4ε, εαε
4 ) + ‖∇ (

g2
ε

(
f̃ε − 1

))‖L2( εαε
4 ,

εαε
2 )

≤ C
(
‖∇ f̃ε‖L2 + ‖ f̃ε‖L∞(2ε,4ε) + ‖ f̃ε − 1‖L∞( εαε

4 ,
εαε
2 )

)

≤ C√
ln αε

+ C

ln αε

≤ C√
ln αε

where we used the bounds

‖ f̃ε‖L∞(2ε,4ε) =
∥∥∥∥ ln(|x |/ε)

ln αε

∥∥∥∥
L∞(2ε,4ε)

≤ C

ln αε

and

‖ f̃ε − 1‖L∞( εαε
4 ,

εαε
2 ) =

∥∥∥∥ ln(|x |/(εαε))

ln αε

∥∥∥∥
L∞( εαε

4 ,
εαε
2 )

≤ C

ln αε

.
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Similarly, using in addition that
∥∥|x |∇gi

ε

∥∥
L∞ and

∥∥|x |∇2gi
ε

∥∥
L2 are bounded independently

of ε for i = 1, 2, we can estimate∥∥|x |∇2 fε
∥∥

L2 ≤ ∥∥|x |∇2 (
g1
ε f̃ε

)∥∥
L2(2ε,4ε) + ∥∥|x |∇2 f̃ε

∥∥
L2(4ε, εαε

4 )

+ ∥∥|x |∇2 (
g2
ε

(
f̃ε − 1

))∥∥
L2( εαε

4 ,
εαε
2 )

≤ C
(∥∥|x |∇2 f̃ε

∥∥
L2 + ‖∇ f̃ε‖L2 + ‖ f̃ε‖L∞(2ε,4ε) + ‖ f̃ε − 1‖L∞( εαε

4 ,
εαε
2 )

)

≤ C√
ln αε

+ C

ln αε

≤ C√
ln αε

.

Finally,

‖ fε − 1‖L2 ≤ ‖g1
ε f̃ε − 1‖L2(2ε,4ε) + ‖ f̃ε − 1‖L2(4ε, εαε

4 )

+ ‖g2
ε

(
f̃ε − 1

)‖L2( εαε
4 ,

εαε
2 ) + ‖1‖L2(|x |<2ε)

≤ C
(‖ f̃ε − 1‖L2 + ‖1‖L2(|x |<4ε)

)

≤ C

(
εαε

ln αε

+ ε

)

≤ C
εαε

ln αε

.

This completes the proof of the lemma. ��
The function fε is a cut-off in the neighborhood of the disk D(0, ε). We define now a

cut-off in the neighborhood of the disk D(hε(t), ε) by setting

ηε(t, x) = fε(x − hε(t)).

Lemma 3 immediately implies that ηε has the following properties:

Lemma 4 We have that

(i) ηε ∈ W 1,∞(R+; C∞
0,σ );

(ii) ηε vanishes in the neighborhood of the disk D(hε(t), ε) and ηε = 1 for |x − hε(t)| ≥
εαε;

(iii) there exists a universal constant C such that

‖ηε‖L∞ = 1, ‖∇ηε‖L2 ≤ C√
ln αε

,
∥∥|x − hε(t)|∇2ηε

∥∥
L2 ≤ C√

ln αε

(20)

and

‖ηε − 1‖L2 ≤ C
εαε

ln αε

· (21)

Given a test function ϕ ∈ C1
b (R+; C∞

0,σ ) we construct a test function ϕε on the set |x −
hε(t)| > ε by setting

ϕε = ∇⊥(ηεψε) (22)

where ψε was defined in Sect. 2 (see relation (14)). We state some properties of ϕε in the
following lemma:
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Lemma 5 The test function ϕε has the following properties:

(i) ϕε ∈ W 1,∞(R+; C∞
0,σ ) and is supported in the set |x − hε(t)| > ε;

(ii) ϕε → ϕ strongly in L∞(0, T ; H1) as ε → 0;
(iii) there exists a universal constant C such that

‖ϕε‖L∞(0,T ;H1) ≤ C‖ϕ‖L∞(0,T ;H3). (23)

Proof Since ηε and ψε are W 1,∞ in time and smooth in space, so is ϕε. The compact support
in x of ϕε in the set |x −hε(t)| > ε follows from the compact support of ϕ and the localization
properties of ηε . Obviously ϕε is also divergence free so claim (i) follows.

Recalling that ∇⊥ψε = ϕ we write

ϕε − ϕ = ∇⊥(ηεψε) − ϕ = ∇⊥ηεψε + ηε∇⊥ψε − ϕ = ∇⊥ηεψε + (ηε − 1)ϕ.

Using the bound (15) and recalling that∇ηε is supported in D(hε(t), εαε)we can estimate

‖ϕε − ϕ‖L2 ≤ ‖(ηε − 1)ϕ‖L2 + ‖∇ηεψε‖L2

≤ ‖ηε − 1‖L2‖ϕ‖L∞ + ‖∇ηε‖L2‖ψε‖L∞(D(hε(t),εαε))

≤ ‖ηε − 1‖L2‖ϕ‖L∞ + εαε‖∇ηε‖L2‖ϕ‖L∞

= ‖ϕ‖L∞(‖ηε − 1‖L2 + εαε‖∇ηε‖L2).

Taking the supremum on [0, T ] and using (19), (20) and (21) we deduce that

‖ϕε − ϕ‖L∞(0,T ;L2) ≤ C
εαε√
ln αε

‖ϕ‖L∞([0,T ]×R2)

ε→0−→ 0. (24)

Next,

‖∇(ϕε − ϕ)‖L2 = ‖∇∇⊥ ((ηε − 1)ψε) ‖L2

≤ ‖∇∇⊥ηεψε‖L2 + C‖∇ηε‖L2‖∇ψε‖L∞ + ‖ηε − 1‖L2‖∇2ψε‖L∞ .

We bound the first term on the right-hand side using (17) and (20):

‖∇∇⊥ηεψε‖L2 ≤ C‖ϕ‖L∞
∥∥|x − hε(t)|∇2ηε

∥∥
L2 ≤ C√

ln αε

‖ϕ‖L∞ .

Recalling that ∇⊥ψε = ϕ and using again Lemma 4 we infer that

‖∇(ϕε − ϕ)‖L2 ≤ C√
ln αε

‖ϕ‖L∞ + C‖∇ηε‖L2‖ϕ‖L∞ + ‖ηε − 1‖L2‖∇ϕ‖L∞

≤ C√
ln αε

‖ϕ‖W 1,∞ .

Combining this bound with (24) implies that

‖ϕε − ϕ‖L∞(0,T ;H1) ≤ C√
ln αε

‖ϕ‖L∞(0,T ;W 1,∞)

ε→0−→ 0.

In addition, we obtain that there exists a universal constant C > 0 such that

‖ϕε‖L∞(0,T ;H1) ≤ C‖ϕ‖L∞(0,T ;H1∩W 1,∞).

Using the Sobolev embedding H3 ↪→ W 1,∞ completes the proof of the lemma. ��
We end this section with an estimate on the H−1 norm of the time-derivative of ϕε .
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Lemma 6 Let w be an H1 vector field. There exists a universal constant C > 0 such that for
all times t ≥ 0 where hε is differentiable we have that∣∣∣∣

∫
R2

w(x) · (∂tϕε(t, x) − ∂tϕ(t, x)) dx

∣∣∣∣ ≤ C‖ curlw‖L2

(
ε2α2

ε

ln αε

‖∂tϕ(t, ·)‖L∞

+ εαε√
ln αε

|h′
ε(t)|‖ϕ(t, ·)‖L∞

)
.

Proof Let t be a time where hε is differentiable. We use (22) to write∫
R2

w(x) · (∂tϕε(t, x) − ∂tϕ(t, x)) dx =
∫
R2

w · ∂t∇⊥ ((ηε − 1)ψε)

= −
∫
R2

curlw ∂t ((ηε − 1)ψε)

= −
∫
R2

curlw ∂tηεψε −
∫
R2

curlw (ηε − 1)∂tψε.

Clearly
∂tηε = ∂t ( fε(x − hε(t))) = −h′

ε(t) · ∇ fε(x − hε(t))

is supported in the set {|x − hε(t)| ≤ εαε}. We can therefore bound∣∣∣∣
∫
R2

curlw ∂tηεψε

∣∣∣∣ ≤ C |h′
ε(t)|

∫
|x−hε(t)|≤εαε

| curlw||∇ fε(x − hε(t))||ψε|
≤ C |h′

ε(t)|‖ curlw‖L2‖∇ fε‖L2‖ψε‖L∞(D(hε(t),εαε))

≤ C
εαε√
ln αε

|h′
ε(t)|‖ curlw‖L2‖ϕ‖L∞

where we used (15) and Lemma 3.
Similarly, ηε − 1 is supported in the set {|x − hε(t)| ≤ εαε} so we can use (16) and (21)

to deduce that∣∣∣∣
∫
R2

curlw (ηε − 1)∂tψε

∣∣∣∣ ≤ ‖ curlw‖L2‖ηε − 1‖L2‖∂tψε‖L∞(D(hε(t),εαε))

≤ C
εαε

ln αε

‖ curlw‖L2(εαε‖∂tϕ‖L∞ + |h′
ε(t)|‖ϕ‖L∞).

The conclusion follows putting together the above relations. ��

4 Temporal Estimate and Strong Convergence

The aim of this section is to prove the strong convergence of some sub-sequence of vε . More
precisely, we will prove the following result.

Lemma 7 There exists a sub-sequence vεk of vε which converges strongly in L2(0, T ; L2
loc).

To prove this lemma we first show some time-derivative estimates and then use the Ascoli
theorem.

Let ϕ ∈ C∞
0,σ (R2) be a test function which does not depend on the time. Even though ϕ

does not depend on t , we can still perform the construction of the cut-off ϕε as in Sect. 3
(see relation (22)) and all the results of that section remain valid. Observe that even though
ϕ does not depend on the time, the modified test function ϕε is time-dependent.
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Let us denote by Hs
σ the space of Hs divergence free vector fields on R

2. We endow Hs
σ

with the Hs norm. The dual space of Hs
σ is H−s

σ . We have that C∞
0,σ is dense in Hs

σ for all
s ∈ R.

Let t ∈ [0, T ] be fixed. We use Lemma 4 and relation (15) to bound∣∣∣∣
∫
R2

vε(t, x) · ϕε(t, x) dx

∣∣∣∣ =
∣∣∣∣
∫
R2

vε · ∇⊥(ηεψε) dx

∣∣∣∣
=

∣∣∣∣
∫
R2

vε · (∇⊥ηεψε + ηεϕ) dx

∣∣∣∣
≤ ‖vε‖L2‖∇ηε‖L2‖ψε‖L∞(D(hε(t),εαε)) + ‖vε‖L2‖ηε‖L∞‖ϕ‖L2

≤ C
εαε√
ln αε

‖vε‖L2‖ϕ‖L∞ + ‖vε‖L2‖ϕ‖L2

≤ K1‖ϕ‖H2

for some constant K1 independent of ε and t . We used above the Sobolev embedding H2 ↪→
L∞, the boundedness of vε in L∞(0, T ; L2) and relations (19) and (20). We infer that, for
fixed t , the map

C∞
0,σ � ϕ �→

∫
R2

vε(t, x) · ϕε(t, x) dx ∈ R

is linear and continuous for the H2 norm. Since the closure of C∞
0,σ for the H2 norm is H2

σ ,

the above map can be uniquely extended to a continuous linear mapping from H2
σ to R.

Therefore it can be identified to an element of the dual of H2
σ which is H−2

σ . We conclude
that there exists some �ε(t) ∈ H−2

σ such that

〈�ε(t), ϕ〉 =
∫
R2

vε(t, x) · ϕε(t, x) dx ∀ϕ ∈ H2
σ .

Above 〈·, ·〉 denotes the duality bracket between H−2
σ and H2

σ which is the extension of the
usual L2 scalar product. In addition, we have that ‖�ε(t)‖H−2 ≤ K1, so �ε belongs to the
space L∞(0, T ; H−2

σ ) and is bounded independently of ε in this space.
Because ϕε is compactly supported in {|x − hε(t)| > ε} it can be used as test function in

(13). Multiplying (13) by ϕε and integrating in space and time from s to t yields∫ t

s

∫
R2

∂τ vε · ϕε + ν

∫ t

s

∫
R2

∇vε : ∇ϕε +
∫ t

s

∫
R2

vε · ∇vε · ϕε = 0.

We integrate by parts in time the first term above:∫ t

s

∫
R2

∂τ vε · ϕε =
∫
R2

vε(t, x) · ϕε(t, x) dx −
∫
R2

vε(s, x) · ϕε(s, x) dx

−
∫ t

s

∫
R2

vε · ∂τ ϕε

= 〈�ε(t) − �ε(s), ϕ〉 −
∫ t

s

∫
R2

vε · ∂τ ϕε.

We deduce that

〈�ε(t) − �ε(s), ϕ〉 =
∫ t

s

∫
R2

vε · ∂τ ϕε − ν

∫ t

s

∫
R2

∇vε : ∇ϕε

−
∫ t

s

∫
R2

vε · ∇vε · ϕε. (25)

123



Journal of Dynamics and Differential Equations

We bound first∣∣∣∣ν
∫ t

s

∫
R2

∇vε : ∇ϕε

∣∣∣∣ ≤ ν

∫ t

s
‖∇vε‖L2‖∇ϕε‖L2

≤ Cν(t − s)
1
2 ‖ϕ‖H3‖∇vε‖L2([0,T ]×R2)

≤ K (t − s)
1
2 ‖ϕ‖H3

where we used (23) and the hypothesis that vε is bounded in L2(0, T ; H1).
To estimate the last term in (25) we use the Gagliardo–Nirenberg inequality ‖ f ‖L4 ≤

C‖ f ‖
1
2
L2‖∇ f ‖

1
2
L2 , the boundedness of vε in the space displayed in (12) and relation (23):

∣∣∣∣
∫ t

s

∫
R2

vε · ∇vε · ϕε

∣∣∣∣ =
∣∣∣∣
∫ t

s

∫
R2

vε · ∇ϕε · vε

∣∣∣∣
≤

∫ t

s
‖vε‖2L4‖∇ϕε‖L2

≤
∫ t

s
‖vε‖L2‖∇vε‖L2‖ϕε‖H1

≤ C(t − s)
1
2 ‖vε‖L∞(0,T ;L2)‖∇vε‖L2([0,T ]×R2)‖ϕ‖H3

≤ K (t − s)
1
2 ‖ϕ‖H3 .

It remains to estimate the first term on the right-hand side of (25). To do that, we use
Lemma 6. Recalling that ϕ does not depend on the time, we can write∣∣∣∣

∫ t

s

∫
R2

vε · ∂τ ϕε

∣∣∣∣ ≤ C
εαε√
ln αε

∫ t

s
‖ curl vε‖L2 |h′

ε|‖ϕ‖L∞

≤ C
εαε√
ln αε

‖ϕ‖H2

∫ t

s
‖ curl vε‖L2 |h′

ε|

≤ C(t − s)
1
2 ‖ϕ‖H2

εαε√
ln αε

sup
[0,T ]

|h′
ε|‖ curl vε‖L2([0,T ]×R2).

Due to the hypothesis imposed on αε , see (19), we know that εαε√
ln αε

sup[0,T ] |h′
ε| goes to

0 as ε → 0. In particular it is bounded uniformly in ε.
Recalling again the boundedness of vε in the space L2(0, T ; H1), we infer from the above

relations that
|〈�ε(t) − �ε(s), ϕ〉| ≤ K (t − s)

1
2 ‖ϕ‖H3

where the constant K does not depend on ε and ϕ. By density of C∞
0,σ in H3

σ we infer that

‖�ε(t)−�ε(s)‖H−3 ≤ K (t − s)
1
2 . The functions�ε(t) are therefore equicontinuous in time

with values in H−3
σ . They are also bounded in H−3

σ because we already know that they are
bounded in H−2

σ . Since the embedding H−3 ↪→ H−4
loc is compact, the Ascoli theorem implies

that there exists a subsequence �εk of �ε which converges strongly in C0([0, T ]; H−4
loc ).

Recalling the definition of �ε and using Lemma 4 we can write

|〈�ε(t) − vε(t), ϕ〉| =
∣∣∣∣
∫
R2

vε · (∇⊥ηεψε + ηεϕ) dx −
∫
R2

vε · ϕ

∣∣∣∣
=

∣∣∣∣
∫
R2

vε · (∇⊥ηεψε + (ηε − 1)ϕ) dx

∣∣∣∣
≤ C‖vε‖L2‖∇ηε‖L2‖ψε‖L∞(D(hε(t),εαε))
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+ C‖vε‖L2‖ηε − 1‖L2‖ϕ‖L∞

≤ C‖vε‖L2‖ϕ‖L∞
(

εαε√
ln αε

+ εαε

ln αε

)

≤ C‖vε‖L2‖ϕ‖H2
εαε√
ln αε

.

Hence
‖�ε(t) − vε(t)‖H−2 ≤ C‖vε‖L2

εαε√
ln αε

ε→0−→ 0

uniformly in time. Recalling that �εk converges strongly in H−4
loc uniformly in time we infer

that vεk also converges strongly in L∞(0, T ; H−4
loc ). The interpolation inequality ‖ · ‖L2 ≤

‖ · ‖
1
5
H−4‖ · ‖

4
5
H1 and the boundedness of vε in L2(0, T ; H1) finally imply that vεk converges

strongly in L
5
2 (0, T ; L2

loc) ↪→ L2(0, T ; L2
loc). This completes the proof of Lemma 7.

5 Passing to the Limit

In this section we complete the proof of Theorem 4. It is now only a matter of putting together
the results proved in the previous sections.

Given the boundedness of vε in L∞(0, T ; L2) ∩ L2(0, T ; H1) and Lemma 7, we know
that there exists some v ∈ L∞(0, T ; L2) ∩ L2(0, T ; H1) and some sub-sequence vεk such
that

vεk ⇀v weak∗ in L∞(0, T ; L2)

vεk ⇀v weakly in L2(0, T ; H1) (26)

and

vεk → v strongly in L2(0, T ; L2
loc). (27)

Let ϕ ∈ C∞
0 ([0, T )×R

2) be a divergence-free vector field. We construct ϕεk as in Sect. 3,
see relation (22). Since ϕεk is compactly supported in the set {|x − hεk (t)| > εk}, we can
use it as test function in (13) written for εk . We multiply (13) by ϕεk and integrate by parts
in time and space to obtain that

−
∫ T

0

∫
R2

vεk · ∂tϕεk + ν

∫ T

0

∫
R2

∇vεk : ∇ϕεk +
∫ T

0

∫
R2

vεk · ∇vεk · ϕεk

=
∫
R2

vεk (0) · ϕεk (0). (28)

We will pass to the limit εk → 0 in each of the terms above.
First, we know by hypothesis that vεk (0)⇀v0 weakly in L2. From Lemma 5 we also have

that ϕεk (0) → ϕ(0) strongly in L2, so∫
R2

vεk (0) · ϕεk (0)
εk→0−→

∫
R2

v(0) · ϕ(0). (29)

Next, we also know from Lemma 5 that ∇ϕεk → ∇ϕ strongly in L2([0, T ] ×R
2). Given

that ∇vεk ⇀∇v weakly in L2([0, T ] × R
2), see relation (26), we infer that

∫ T

0

∫
R2

∇vεk : ∇ϕεk

εk→0−→
∫ T

0

∫
R2

∇v : ∇ϕ. (30)

123



Journal of Dynamics and Differential Equations

The nonlinear term also passes to the limit quite easily. We decompose∫ T

0

∫
R2

vεk · ∇vεk · ϕεk =
∫ T

0

∫
R2

vεk · ∇vεk · ϕ +
∫ T

0

∫
R2

vεk · ∇vεk · (ϕεk − ϕ).

We know from (27) that vεk → v strongly in L2(0, T ; L2
loc), from (26) that ∇vεk ⇀∇v

weakly in L2(0, T ; L2). Recalling that ϕ is compactly supported and since we obviously
have that ϕ is uniformly bounded in space and time we can pass to the limit in the first term
on the right-hand side:∫ T

0

∫
R2

vεk · ∇vεk · ϕ
εk→0−→

∫ T

0

∫
R2

v · ∇v · ϕ.

To pass to the limit in the second term we make an integration by parts and use the Hölder

inequality, the Gagliardo–Nirenberg inequality ‖ f ‖L4 ≤ C‖ f ‖
1
2
L2‖∇ f ‖

1
2
L2 and Lemma 5

∣∣∣∣
∫ T

0

∫
R2

vεk · ∇vεk · (ϕεk − ϕ)

∣∣∣∣ =
∣∣∣∣
∫ T

0

∫
R2

vεk ⊗ vεk : ∇(ϕεk − ϕ)

∣∣∣∣
≤

∫ T

0
‖vεk ‖2L4‖∇(ϕεk − ϕ)‖L2

≤ C
∫ T

0
‖vεk ‖L2‖∇vεk ‖L2‖∇(ϕεk − ϕ)‖L2

≤ CT
1
2 ‖vεk ‖L∞(0,T ;L2)‖vεk ‖L2(0,T ;H1)

‖ϕεk − ϕ‖L∞(0,T ;H1)

εk→0−→ 0.

We infer that ∫ T

0

∫
R2

vεk · ∇vεk · ϕεk

εk→0−→
∫ T

0

∫
R2

v · ∇v · ϕ. (31)

The last term we need to pass to the limit is the term with the time-derivative. Thanks to
Lemma 6 we can bound∣∣∣∣

∫ T

0

∫
R2

vεk · (
∂tϕεk − ∂tϕ

)
dx

∣∣∣∣
≤ C

∫ T

0
‖ curl vεk ‖L2

(
εk

2α2
εk

ln αεk

‖∂tϕ‖L∞ + εkαεk√
ln αεk

|h′
εk

(t)|‖ϕ‖L∞

)

≤ CT
1
2 ‖vεk ‖L2(0,T ;H1)‖ϕ‖W 1,∞(0,T ;L∞) max

(
εk

2α2
εk

ln αεk

,
εkαεk√
ln αεk

|h′
εk

(t)|
)

εk→0−→ 0

where we used (19). But we also have that∫ T

0

∫
R2

vεk · ∂tϕ
εk→0−→

∫ T

0

∫
R2

v · ∂tϕ

so we can conclude that ∫ T

0

∫
R2

vεk ∂tϕεk

εk→0−→
∫ T

0

∫
R2

v · ∂tϕ. (32)
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Gathering (28), (29), (30), (31) and (32), we conclude that

−
∫ T

0

∫
R2

v · ∂tϕ + ν

∫ T

0

∫
R2

∇v : ∇ϕ +
∫ T

0

∫
R2

v · ∇v · ϕ =
∫
R2

v(0) · ϕ(0)

which is the weak formulation of Navier–Stokes equations in R
2. This completes the proof

of Proposition 1.
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